The spatial-temporal gradient of naturally occurring motoneuron death reflects the time of prior exit from the cell cycle and position within the lateral motor column.
نویسندگان
چکیده
Embryonic lumbar spinal motoneurons (MNs) are characterized by a period of programmed cell death (PCD) that spans several days and occurs in a rostrocaudal gradient. The generation of these MNs also takes place in a temporal-spatial gradient, such that MNs within rostral lumbar segments exit the cell cycle earlier and MNs within progressively caudal regions are born later. In vitro studies have shown that the latest born spinal MNs, presumably through the possession of endogenous "survival properties," are also the last to acquire their trophic dependence. If the birth date and therefore spinal cord location of lumbar spinal MNs influence the spatial-temporal pattern of PCD, then earlier born MNs should die sooner and be located more rostrally than those generated later. Alternatively, if the time at which MNs die during development is unrelated to their prior exit from the cell cycle, those born at various phases should die throughout the period of PCD. We report here that lumbar MNs generated during the earliest part (embryonic day 2-3) of the proliferative period in the developing chick spinal cord tend to die during the earliest stages of the PCD period and that MNs born in successive 12-h intervals die at correspondingly later periods during PCD. Furthermore, the spatial progression of PCD of these subpopulations of MNs occurs in a rostrocaudal gradient. Finally, while MNs do appear to die in a mediolateral gradient during the period of MN PCD, this pattern is only partly accounted for by MNs born in consecutive intervals. These data support the notion that the timing and rostrocaudal location of MNs undergoing PCD reflect their time of exit from the cell cycle.
منابع مشابه
Temporal Correlation Of Bax Expression And Axotomy-Induced Motoneuronal Apoptosis In Adult Rats: A Morphometric, Ultrastructural And Immunohistochemical Study
Background and Objective: As apoptotic cell death is extremely involved in physiological development and many pathological situations such as cancer and neurodegenerative diseases, the understanding of its molecular machinery can be useful in designing new therapeutic strategies. The present study investigated the temporal expression of the proapoptotic protein Bax in adult spinal motoneuron...
متن کاملNaturally occurring cell death and differentiation of developing spinal motoneurons following axotomy.
The purpose of this study was to examine the effects of axon transection on the development and differentiation of spinal motoneurons in the bullfrog (Rana catesbeiana) tadpole. The 3 ventral roots (VRs) that innervate the hindlimb were transected, and the animals were killed 6-7 weeks later (reinnervation took place within 3 weeks). At early stages of development, axotomy resulted in an increa...
متن کاملRescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to rescue developing motoneurons in vivo and in vitro from both naturally occurring and axotomy-induced cell death. To test whether GDNF has trophic effects on adult motoneurons, we used a mouse model of injury-induced adult motoneuron degeneration. Injuring adult motoneuron axons at the exit point of the nerve from the spinal co...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 216 2 شماره
صفحات -
تاریخ انتشار 1999